organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,9-Dimethyl-3,9-bis(4-nitrophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane

Xiaoqiang Sun,^a Bin Yu,^b Xiuqin Zhang,^b* Xuqiang Chao^b and Qiang Chen^b

^aKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China, and ^bHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China Correspondence e-mail: yu_bin235@hotmail.com

Received 14 March 2011; accepted 21 April 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.187; data-to-parameter ratio = 12.6.

In the title compound, $C_{21}H_{22}N_2O_8$, both of the nonplanar sixmembered heterocycles adopt chair conformations. The dihedral angle between the terminal benzene rings is 58.22 (11)°. Weak intermolecular $C-H\cdots O$ interactions are observed in the crystal structure.

Related literature

For general background to spiranes, see: Cismaş *et al.* (2005); Mihiş *et al.* (2008); Sun *et al.* (2010).

Experimental

Crystal data	
$C_{21}H_{22}N_2O_8$	b = 11.8790 (18) Å
$M_r = 430.41$	c = 13.522 (3) Å
Triclinic, P1	$\alpha = 115.280 \ (4)^{\circ}$
a = 7.4215 (12) Å	$\beta = 94.426 \ (4)^{\circ}$

```
\gamma = 103.444 (3)^{\circ}

V = 1027.0 (3) \text{ Å}^{3}

Z = 2

Mo K\alpha radiation
```

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\rm min} = 0.976, T_{\rm max} = 0.986$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.187$ S = 1.073563 reflections 282 parameters $\mu = 0.11 \text{ mm}^{-1}$ T = 295 K $0.21 \times 0.21 \times 0.16 \text{ mm}$

5588 measured reflections 3563 independent reflections 2980 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

12 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.37$ e Å⁻³ $\Delta \rho_{min} = -0.26$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9-H9A\cdots O2^{i}$	0.97	2.56	3.515 (3)	168
$C10-H10B\cdotsO1^{i}$	0.97	2.59	3.533 (3)	164
C17−H17···O4 ⁱⁱ	0.93	2.45	3.337 (3)	160
$C20-H20\cdots O7^{iii}$	0.93	2.37	3.242 (3)	155

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Changzhou University and the Natural Science Foundation of China (grant No. 20872051) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2689).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287– 1314.
- Mihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). *Molecules*, 13, 2848–2858.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Gemany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152-156.

Acta Cryst. (2011). E67, o1319 [doi:10.1107/S1600536811015017]

3,9-Dimethyl-3,9-bis(4-nitrophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane

X. Sun, B. Yu, X. Zhang, X. Chao and Q. Chen

Comment

Owing to the characteristic axial and helical chirality, the stereochemistry of spiranes with six-membered rings has been extensively studied (Cismaş *et al.*, 2005). In the past three decades, most of these investigations were carried out with spiranes containing 1,3-dioxane units (Mihiş *et al.*, 2008; Sun *et al.*, 2010). We herein present the structure of 3,9-dimethyl-3,9-di(4-nitrophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (Fig. 1).

In the title compound, the two non-planar six-membered heterocycle adopt chair conformations. The dihedral angle between the nitrobenzene rings is $58.22 (11)^{\circ}$. In the crystal structure, weak intermolecular C—H···O interactions contribute to the crystal packing (Table 1).

Experimental

To a solution of *p*-nitroacetophen (2.06 g, 12.5 mmol) and pentaerythritol (0.68 g, 5 mmol) in toluene(30 ml), *p*-toluenesulfonic acid (0.05 g, 0.3 mmol) as catalyst was added, respectively. Then, the mixtures were refluxed for 6 h to complete the reaction. After reaction, the mixtures were allowed to cool to the room temperature, chloroform (30 ml) was added to dissolve the product, the remain residue was purified by recrystallization using ethanol to provide the title compound as a white solid (85% yield, m.p. 516–517 K). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol and chloroform mixed solution.

Refinement

12 restraints with the ISOR command was applied to make O2 and N1 be approximately isotropic. All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

3,9-Dimethyl-3,9-bis(4-nitrophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane

Crystal data C₂₁H₂₂N₂O₈

Z = 2

$M_r = 430.41$	F(000) = 452
Triclinic, PT	$D_{\rm x} = 1.392 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.4215 (12) Å	Cell parameters from 3502 reflections
b = 11.8790 (18) Å	$\theta = 2.9 - 30.2^{\circ}$
c = 13.522 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 115.280 \ (4)^{\circ}$	T = 295 K
$\beta = 94.426 \ (4)^{\circ}$	Block, colorless
$\gamma = 103.444 \ (3)^{\circ}$	$0.21\times0.21\times0.16~mm$
V = 1027.0 (3) Å ³	

Data collection

Bruker APEXII CCD diffractometer	3563 independent reflections
Radiation source: fine-focus sealed tube	2980 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.022$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -8 \rightarrow 8$
$T_{\min} = 0.976, T_{\max} = 0.986$	$k = -14 \rightarrow 14$
5588 measured reflections	$l = -16 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.187$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.135P)^2 + 0.1621P]$ where $P = (F_0^2 + 2F_c^2)/3$
3563 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
282 parameters	$\Delta ho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
12 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	1.2247 (3)	0.6344 (2)	0.63022 (16)	0.0321 (5)
N2	0.1620 (3)	0.14798 (18)	-0.42929 (16)	0.0254 (5)
01	1.2782 (3)	0.5766 (2)	0.67765 (15)	0.0451 (5)
02	1.1755 (3)	0.73336 (19)	0.67867 (14)	0.0424 (5)
03	0.2195 (3)	0.18113 (19)	-0.49758 (15)	0.0398 (5)
O4	-0.0012 (2)	0.13861 (17)	-0.41184 (15)	0.0346 (4)
05	1.2135 (2)	0.31399 (14)	0.10612 (12)	0.0205 (4)
O6	1.1156 (2)	0.48954 (14)	0.11022 (12)	0.0209 (4)
07	0.86957 (19)	0.10427 (13)	-0.16096 (12)	0.0192 (4)
08	0.6406 (2)	0.06651 (14)	-0.06059 (12)	0.0238 (4)
C1	1.2214 (3)	0.5840 (2)	0.51053 (18)	0.0242 (5)
C2	1.2715 (3)	0.4717 (2)	0.45462 (19)	0.0254 (5)
H2A	1.3038	0.4270	0.4920	0.030*
C3	1.2728 (3)	0.4269 (2)	0.34267 (18)	0.0231 (5)
H3A	1.3069	0.3515	0.3041	0.028*
C4	1.2233 (3)	0.4939 (2)	0.28631 (17)	0.0195 (5)
C5	1.1707 (3)	0.6059 (2)	0.34539 (18)	0.0224 (5)
Н5	1.1353	0.6501	0.3083	0.027*
C6	1.1703 (3)	0.6524 (2)	0.45800 (18)	0.0244 (5)
H6	1.1366	0.7278	0.4973	0.029*
C7	1.2414 (3)	0.4498 (2)	0.16478 (17)	0.0199 (5)
C8	1.4377 (3)	0.5140 (2)	0.15867 (19)	0.0264 (5)
H8A	1.5284	0.4917	0.1958	0.040*
H8B	1.4615	0.6069	0.1944	0.040*
H8C	1.4484	0.4846	0.0819	0.040*
C9	1.0213 (3)	0.2363 (2)	0.08616 (17)	0.0215 (5)
H9A	0.9863	0.2480	0.1568	0.026*
H9B	1.0111	0.1449	0.0421	0.026*
C10	0.9207 (3)	0.4212 (2)	0.09267 (17)	0.0211 (5)
H10A	0.8431	0.4507	0.0534	0.025*
H10B	0.8844	0.4397	0.1641	0.025*
C11	0.8872 (3)	0.2752 (2)	0.02479 (17)	0.0200 (5)
C12	0.9199 (3)	0.2421 (2)	-0.09323 (17)	0.0187 (5)
H12A	0.8447	0.2786	-0.1264	0.022*
H12B	1.0520	0.2806	-0.0901	0.022*
C13	0.6814 (3)	0.2026 (2)	0.01311 (18)	0.0236 (5)
H13A	0.6576	0.2144	0.0859	0.028*
H13B	0.5984	0.2386	-0.0156	0.028*
C14	0.6799 (3)	0.0390 (2)	-0.16773 (17)	0.0205 (5)
C15	0.6618 (3)	-0.1047 (2)	-0.22524 (19)	0.0282 (5)
H15A	0.7513	-0.1229	-0.1834	0.042*
H15B	0.6865	-0.1289	-0.2991	0.042*
H15C	0.5360	-0.1537	-0.2298	0.042*
C16	0.5415 (3)	0.07090 (19)	-0.23489 (17)	0.0192 (5)
C17	0.5956 (3)	0.0991 (2)	-0.31997 (17)	0.0195 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H17	0.7169	0.1014	-0.3338	0.023*
C18	0.4722 (3)	0.1238 (2)	-0.38398 (17)	0.0204 (5)
H18	0.5097	0.1443	-0.4398	0.024*
C19	0.2916 (3)	0.1176 (2)	-0.36354 (17)	0.0208 (5)
C20	0.2302 (3)	0.0863 (2)	-0.28153 (18)	0.0232 (5)
H20	0.1073	0.0812	-0.2699	0.028*
C21	0.3573 (3)	0.0631 (2)	-0.21751 (18)	0.0236 (5)
H21	0.3192	0.0419	-0.1621	0.028*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0187 (10)	0.0450 (13)	0.0191 (10)	-0.0053 (9)	-0.0021 (8)	0.0112 (9)
N2	0.0205 (10)	0.0278 (10)	0.0265 (10)	0.0095 (8)	0.0042 (8)	0.0100 (9)
01	0.0418 (11)	0.0681 (14)	0.0253 (9)	0.0071 (10)	0.0027 (8)	0.0266 (10)
02	0.0362 (10)	0.0535 (12)	0.0220 (9)	0.0097 (9)	0.0090 (8)	0.0045 (8)
03	0.0348 (10)	0.0605 (13)	0.0410 (11)	0.0205 (9)	0.0092 (8)	0.0349 (10)
04	0.0220 (9)	0.0451 (10)	0.0416 (10)	0.0175 (8)	0.0069 (7)	0.0203 (9)
05	0.0209 (8)	0.0203 (8)	0.0193 (8)	0.0082 (6)	0.0035 (6)	0.0072 (6)
06	0.0240 (8)	0.0224 (8)	0.0189 (8)	0.0084 (6)	0.0036 (6)	0.0111 (6)
07	0.0163 (7)	0.0208 (8)	0.0186 (7)	0.0058 (6)	0.0036 (6)	0.0072 (6)
08	0.0253 (8)	0.0256 (8)	0.0206 (8)	0.0037 (7)	0.0038 (6)	0.0127 (7)
C1	0.0158 (10)	0.0328 (12)	0.0165 (11)	-0.0022 (9)	0.0014 (8)	0.0097 (10)
C2	0.0214 (11)	0.0306 (12)	0.0237 (11)	0.0004 (9)	-0.0023 (9)	0.0168 (10)
C3	0.0224 (11)	0.0208 (11)	0.0239 (11)	0.0031 (9)	0.0002 (9)	0.0106 (9)
C4	0.0149 (10)	0.0222 (11)	0.0194 (11)	0.0027 (8)	0.0020 (8)	0.0094 (9)
C5	0.0220 (11)	0.0233 (11)	0.0216 (11)	0.0064 (9)	0.0024 (9)	0.0105 (9)
C6	0.0191 (11)	0.0256 (11)	0.0216 (11)	0.0041 (9)	0.0042 (9)	0.0059 (9)
C7	0.0225 (11)	0.0203 (11)	0.0185 (11)	0.0082 (9)	0.0037 (9)	0.0096 (9)
C8	0.0265 (12)	0.0297 (12)	0.0236 (12)	0.0069 (10)	0.0086 (9)	0.0131 (10)
C9	0.0250 (11)	0.0197 (11)	0.0180 (10)	0.0056 (9)	0.0031 (9)	0.0076 (9)
C10	0.0231 (11)	0.0253 (11)	0.0159 (10)	0.0092 (9)	0.0032 (8)	0.0095 (9)
C11	0.0217 (11)	0.0234 (11)	0.0174 (11)	0.0086 (9)	0.0057 (8)	0.0103 (9)
C12	0.0188 (10)	0.0192 (10)	0.0175 (11)	0.0048 (8)	0.0030 (8)	0.0085 (9)
C13	0.0245 (11)	0.0287 (12)	0.0171 (10)	0.0089 (9)	0.0056 (9)	0.0092 (9)
C14	0.0191 (11)	0.0227 (11)	0.0184 (11)	0.0054 (9)	0.0040 (8)	0.0086 (9)
C15	0.0284 (12)	0.0228 (12)	0.0296 (12)	0.0057 (10)	-0.0020 (10)	0.0107 (10)
C16	0.0179 (10)	0.0158 (10)	0.0202 (11)	0.0043 (8)	0.0030 (8)	0.0055 (9)
C17	0.0163 (10)	0.0228 (11)	0.0174 (10)	0.0056 (8)	0.0059 (8)	0.0070 (9)
C18	0.0188 (10)	0.0234 (11)	0.0171 (10)	0.0045 (9)	0.0057 (8)	0.0080 (9)
C19	0.0193 (11)	0.0186 (10)	0.0199 (11)	0.0065 (8)	0.0006 (8)	0.0048 (9)
C20	0.0167 (10)	0.0281 (12)	0.0242 (11)	0.0080 (9)	0.0090 (9)	0.0099 (10)
C21	0.0206 (11)	0.0268 (12)	0.0243 (11)	0.0054 (9)	0.0087 (9)	0.0127 (10)

Geometric parameters (Å, °)

N1—O1	1.226 (3)	C8—H8C	0.9600
N1—O2	1.234 (3)	C9—C11	1.519 (3)
N1—C1	1.462 (3)	С9—Н9А	0.9700

N2-03	1 218 (2)	С9—Н9В	0.9700
N2-04	1.210(2) 1 240(2)	C10—C11	1 522 (3)
N2C19	1 466 (3)	C10—H10A	0.9700
05-07	1 414 (2)	C10—H10B	0.9700
05-09	1.441(2)	C11-C12	1 526 (3)
06-07	1 426 (2)	C11-C13	1.528 (3)
O6—C10	1430(2)	C12—H12A	0.9700
07-014	1415(2)	C12—H12B	0.9700
07-012	1 428 (2)	C13—H13A	0.9700
08—C14	1 413 (2)	C13—H13B	0.9700
08-013	1 431 (3)	C14—C15	1 510 (3)
C1-C2	1 379 (3)	C14—C16	1.534 (3)
C1 - C6	1 379 (3)	C15—H15A	0.9600
C_{2}^{2}	1 375 (3)	C15—H15B	0.9600
C2—H2A	0.9300	C15—H15C	0.9600
$C_2 = C_2$	1 400 (3)	C16-C17	1 391 (3)
C3_H3A	0.9300	C16-C21	1 303 (3)
C4-C5	1 393 (3)	C17-C18	1.375 (3)
C_{1}	1.525 (3)	C17—H17	0.0300
$C_{1} = C_{1}$	1.325(3)	$C_{18} - C_{19}$	1 381 (3)
C5—H5	0.9300	C18—H18	0.0300
C6 H6	0.9300	C_{10} C_{20}	1 388 (3)
C_{7}	1 506 (3)	$C_{10}^{20} = C_{20}^{21}$	1.386(3) 1.384(3)
$C_{1} = C_{3}$	0.0600	C20_H20	0.0300
	0.9000	C21 H21	0.9300
	0.9000		0.9500
$() = N = O^2$			
01_N1_01	123.3 (2)	C11—C10—H10B	109.6
01-N1-02 01-N1-C1	123.3 (2) 118.2 (2)	C11—C10—H10B H10A—C10—H10B	109.6 108.1
01-N1-C1 02-N1-C1	125.5 (2) 118.2 (2) 118.6 (2)	C11—C10—H10B H10A—C10—H10B C9—C11—C10	109.6 108.1 107.29 (16)
01N102 01	123.5 (2) 118.2 (2) 118.6 (2) 123.52 (19)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12	109.6 108.1 107.29 (16) 111.57 (17)
01-N1-C1 02-N1-C1 03-N2-04 03-N2-C19	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16)
01N1C1 02N1C1 03N2C19 04N2C19	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16)
01N1C1 02N1C1 03N2C1 03N2C19 04N2C19 C7O5C9	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17)
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C7O5C9 C7O6C10	123.5 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17)
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C7O5C9 C7O6C10 C14O7C12	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16)
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C7O5C9 C7O6C10 C14O7C12 C14O8C13	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15) 113.91 (15)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C7O5C9 C7O6C10 C14O7C12 C14O8C13 C2C1C6	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15) 113.91 (15) 122.4 (2)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C705C9 C706C10 C1407C12 C1408C13 C2C1C6 C2C1N1	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15) 113.91 (15) 122.4 (2) 119.3 (2)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A O7—C12—H12B	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5
01N1C1 02N1C1 03N2O4 03N2C19 C7O5C9 C7O6C10 C14O7C12 C14O8C13 C2C1N1 C6C1N1	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15) 113.91 (15) 122.4 (2) 119.3 (2) 118.3 (2)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B C11—C12—H12B	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C7O5C9 C7O5C9 C7O6C10 C14O7C12 C14O8C13 C2C1N1 C6C1N1 C3C2C1	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15) 113.91 (15) 122.4 (2) 119.3 (2) 118.90 (19)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C7O5C9 C7O6C10 C14O7C12 C14O8C13 C2C1N1 C6C1N1 C3C2C1 C3C2H2A	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.91 (15) 122.4 (2) 119.3 (2) 118.90 (19) 120.5	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B C11—C12—H12B H12A—C12—H12B O8—C13—C11	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
01N1C1 02N1C1 03N2O4 03N2C19 04N2C19 C705C9 C706C10 C1407C12 C1408C13 C2C1C6 C2C1N1 C3C2C1 C3C2H2A C1C2H2A	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.91 (15) 122.4 (2) 119.3 (2) 118.3 (2) 118.90 (19) 120.5	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—C11 O8—C13—H13A	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 108.1 110.95 (16) 109.4
$\begin{array}{c} 01 = N1 = 02 \\ 01 = N1 = 02 \\ 02 = N1 = 01 \\ 03 = N2 = 04 \\ 03 = N1 = 02 \\ 04 = N1 \\ 05 = 04 \\ 07 =$	123.5 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15) 113.91 (15) 122.4 (2) 119.3 (2) 118.90 (19) 120.5 120.5 (2)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—C11 O8—C13—H13A C11—C13—H13A	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 108.1 110.95 (16) 109.4
$\begin{array}{c} 01 - N1 - 02 \\ 01 - N1 - 01 \\ 02 - N1 - 01 \\ 03 - N2 - 04 \\ 03 - N2 - 04 \\ 03 - N2 - 019 \\ 04 - 019 \\ $	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.91 (15) 122.4 (2) 119.3 (2) 118.90 (19) 120.5 120.5 (2) 119.7	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—C11 O8—C13—H13A C11—C13—H13A O8—C13—H13B	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4
$\begin{array}{c} 01 - N1 - 02 \\ 01 - N1 - 01 \\ 02 - N1 - 01 \\ 03 - N2 - 04 \\ 03 - N2 - 04 \\ 03 - N2 - 019 \\ 04 - N2 - 019 \\ 04 - N2 - 019 \\ 07 - 05 - 09 \\ 07 - 06 - 010 \\ 014 - 07 - 012 \\ 014 - 07 - 012 \\ 014 - 07 - 012 \\ 014 - 07 - 012 \\ 014 - 07 - 012 \\ 014 - 03 - 013 \\ 014 - 014 \\$	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.91 (15) 122.4 (2) 119.3 (2) 118.90 (19) 120.5 120.5 (2) 119.7	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C10—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—H13A C11—C13—H13A O8—C13—H13B C11—C13—H13B	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4
$\begin{array}{c} 01 - N1 - 02 \\ 01 - N1 - 01 \\ 02 - N1 - 01 \\ 03 - N2 - 04 \\ 01 - 05 - 09 \\ 04 - N2 - 04 \\ 01 - 05 - 09 \\ 04 - 07 - 012 \\ 04 - 07 - 012 \\ 04 - 07 - 012 \\ 04 - 07 - 012 \\ 04 - 07 - 012 \\ 04 - 07 - 012 \\ 04 - 07 - 012 \\ 04 - 01 \\ 04 - 07 - 012 \\ 04 - 01 \\ 0$	123.3 (2) 118.2 (2) 118.6 (2) 123.52 (19) 118.69 (18) 117.79 (18) 113.97 (15) 113.62 (14) 113.49 (15) 113.91 (15) 122.4 (2) 119.3 (2) 118.3 (2) 118.90 (19) 120.5 120.5 120.5 (2) 119.7 119.7 119.7 118.81 (19)	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—C11 O8—C13—H13A C11—C13—H13B C11—C13—H13B H13A—C13—H13B	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4 109.4
$\begin{array}{c} 01 = N1 = 02 \\ 01 = N1 = 02 \\ 02 = N1 = 01 \\ 03 = N2 = 04 \\ 03 = N1 = 02 \\ 04 = N2 = 04 \\ 03 = N1 = 02 \\ 04 = N1 = 04 \\ 03 = N1 = 02 \\ 04 = N1 = 04 \\$	123.5 (2) $118.2 (2)$ $118.6 (2)$ $123.52 (19)$ $118.69 (18)$ $117.79 (18)$ $113.97 (15)$ $113.62 (14)$ $113.49 (15)$ $113.91 (15)$ $122.4 (2)$ $119.3 (2)$ $118.3 (2)$ $118.90 (19)$ 120.5 120.5 $120.5 (2)$ 119.7 119.7 119.7 $118.81 (19)$ $121.08 (18)$	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C10—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—C11 O8—C13—H13A C11—C13—H13A C11—C13—H13B H13A—C13—H13B H13A—C13—H13B O8—C14—O7	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4
$\begin{array}{c} 01 - N1 - 02 \\ 01 - N1 - 01 \\ 02 - N1 - 01 \\ 03 - N2 - 04 \\ 03 - N2 - 04 \\ 03 - N2 - 019 \\ 04 - N2 - 019 \\ 04 - N2 - 019 \\ 07 - 05 - 09 \\ 07 - 06 - 010 \\ 014 - 07 - 012 \\ 014 - 07 - 012 \\ 014 - 07 - 012 \\ 014 - 07 - 012 \\ 014 - 03 - 013 \\ 014 - 03 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ 014 - 014 \\ $	123.5 (2) $118.2 (2)$ $118.6 (2)$ $123.52 (19)$ $118.69 (18)$ $117.79 (18)$ $113.97 (15)$ $113.62 (14)$ $113.49 (15)$ $113.91 (15)$ $122.4 (2)$ $119.3 (2)$ $118.3 (2)$ $118.90 (19)$ 120.5 $120.5 (2)$ 119.7 119.7 119.7 $118.81 (19)$ $121.08 (18)$ $119.96 (19)$	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—C11 O8—C13—H13A C11—C13—H13A C11—C13—H13B H13A—C13—H13B H13A—C13—H13B O8—C14—O7 O8—C14—O7 O8—C14—C15	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.4 108.0 111.31 (16) 106.00 (17)
$\begin{array}{c} 01 - N1 - 02 \\ 01 - N1 - 01 \\ 02 - N1 - 01 \\ 03 - N2 - 04 \\ 03 - N2 - 04 \\ 03 - N2 - 019 \\ 04 - N2 - 019 \\ 04 - N2 - 019 \\ 07 - 05 - 09 \\ 07 - 06 - 010 \\ 014 - 07 - 012 \\ 014 - 014 - 014$	123.5 (2) $118.2 (2)$ $118.6 (2)$ $123.52 (19)$ $118.69 (18)$ $117.79 (18)$ $113.97 (15)$ $113.62 (14)$ $113.49 (15)$ $113.91 (15)$ $122.4 (2)$ $119.3 (2)$ $118.3 (2)$ $118.90 (19)$ 120.5 120.5 $120.5 (2)$ 119.7 119.7 $118.81 (19)$ $121.08 (18)$ $119.96 (19)$ $121.19 (19)$	C11—C10—H10B H10A—C10—H10B C9—C11—C10 C9—C11—C12 C10—C11—C12 C9—C11—C13 C10—C11—C13 C12—C11—C13 O7—C12—C11 O7—C12—H12A C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O8—C13—C11 O8—C13—H13A C11—C13—H13A C11—C13—H13B H13A—C13—H13B H13A—C13—H13B O8—C14—O7 O8—C14—C15 O7—C14—C15	109.6 108.1 107.29 (16) 111.57 (17) 110.46 (16) 111.03 (16) 109.82 (17) 106.70 (17) 110.82 (16) 109.5 109.5 109.5 109.5 109.5 109.4 106.00 (17) 106.00 (17) 106.04 (16)

С4—С5—Н5	119.4	O7—C14—C16	111.13 (16)
C1—C6—C5	118.1 (2)	C15—C14—C16	110.34 (17)
С1—С6—Н6	120.9	C14—C15—H15A	109.5
С5—С6—Н6	120.9	C14—C15—H15B	109.5
O5—C7—O6	111.16 (15)	H15A—C15—H15B	109.5
O5—C7—C8	106.19 (17)	C14—C15—H15C	109.5
O6—C7—C8	106.18 (16)	H15A—C15—H15C	109.5
O5—C7—C4	112.31 (16)	H15B—C15—H15C	109.5
O6—C7—C4	110.65 (16)	C17—C16—C21	119.12 (19)
C8—C7—C4	110.07 (17)	C17—C16—C14	119.69 (18)
С7—С8—Н8А	109.5	C21—C16—C14	121.04 (18)
С7—С8—Н8В	109.5	C18—C17—C16	120.94 (19)
H8A—C8—H8B	109.5	С18—С17—Н17	119.5
С7—С8—Н8С	109.5	С16—С17—Н17	119.5
H8A—C8—H8C	109.5	C17—C18—C19	118.60 (19)
H8B—C8—H8C	109.5	C17—C18—H18	120.7
O5—C9—C11	110.63 (16)	C19—C18—H18	120.7
О5—С9—Н9А	109.5	C18—C19—C20	122.33 (19)
С11—С9—Н9А	109.5	C18—C19—N2	118.64 (18)
О5—С9—Н9В	109.5	C20—C19—N2	119.01 (18)
С11—С9—Н9В	109.5	C21—C20—C19	118.04 (19)
H9A—C9—H9B	108.1	C21—C20—H20	121.0
O6—C10—C11	110.27 (16)	С19—С20—Н20	121.0
O6—C10—H10A	109.6	C20-C21-C16	120.92 (19)
C11-C10-H10A	109.6	C20—C21—H21	119.5
O6—C10—H10B	109.6	C16—C21—H21	119.5
01—N1—C1—C2	2.3 (3)	C14—O7—C12—C11	57.4 (2)
O2—N1—C1—C2	-178.41 (19)	C9—C11—C12—O7	66.9 (2)
O1—N1—C1—C6	-176.8 (2)	C10-C11-C12-O7	-173.87 (15)
O2—N1—C1—C6	2.5 (3)	C13—C11—C12—O7	-54.5 (2)
C6—C1—C2—C3	0.8 (3)	C14—O8—C13—C11	-56.1 (2)
N1—C1—C2—C3	-178.31 (18)	C9—C11—C13—O8	-68.0 (2)
C1—C2—C3—C4	-0.3 (3)	C10-C11-C13-O8	173.56 (15)
C2—C3—C4—C5	-0.7 (3)	C12—C11—C13—O8	53.8 (2)
C2—C3—C4—C7	174.82 (19)	C13—O8—C14—O7	55.3 (2)
C3—C4—C5—C6	1.2 (3)	C13—O8—C14—C15	170.19 (16)
C7—C4—C5—C6	-174.24 (19)	C13-08-C14-C16	-69.6 (2)
C2-C1-C6-C5	-0.3 (3)	C12—O7—C14—O8	-55.9 (2)
N1-C1-C6-C5	178.84 (18)	C12-07-C14-C15	-170.77 (15)
C4—C5—C6—C1	-0.8 (3)	C12	69.3 (2)
C9—O5—C7—O6	-54.6 (2)	O8—C14—C16—C17	155.17 (18)
C9—O5—C7—C8	-169.62 (16)	O7-C14-C16-C17	30.2 (2)
C9—O5—C7—C4	70.0 (2)	C15-C14-C16-C17	-87.2 (2)
C10—O6—C7—O5	55.6 (2)	O8-C14-C16-C21	-29.4 (3)
C10—O6—C7—C8	170.66 (16)	O7—C14—C16—C21	-154.43 (19)
C10—O6—C7—C4	-69.9 (2)	C15-C14-C16-C21	88.2 (2)
C5—C4—C7—O5	-154.14 (18)	C21—C16—C17—C18	2.3 (3)
C3—C4—C7—O5	30.5 (3)	C14—C16—C17—C18	177.83 (18)
C5 C4 C7 O(-293(3)	C16-C17-C18-C19	-12(3)

C3—C4—C7—O6	155.32 (18)	C17—C18—C19—C20	-0.5 (3)
C5—C4—C7—C8	87.8 (2)	C17—C18—C19—N2	178.06 (18)
C3—C4—C7—C8	-87.6 (2)	O3—N2—C19—C18	-2.0 (3)
C7—O5—C9—C11	55.9 (2)	O4—N2—C19—C18	178.18 (19)
C7—O6—C10—C11	-57.5 (2)	O3—N2—C19—C20	176.7 (2)
O5—C9—C11—C10	-54.6 (2)	O4—N2—C19—C20	-3.2 (3)
O5—C9—C11—C12	66.6 (2)	C18—C19—C20—C21	1.1 (3)
O5-C9-C11-C13	-174.56 (16)	N2-C19-C20-C21	-177.47 (18)
O6—C10—C11—C9	55.5 (2)	C19—C20—C21—C16	0.0 (3)
O6-C10-C11-C12	-66.3 (2)	C17—C16—C21—C20	-1.7 (3)
O6-C10-C11-C13	176.29 (15)	C14—C16—C21—C20	-177.16 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
$C9$ — $H9A$ ··· $O2^{i}$	0.97	2.56	3.515 (3)	168.
C10—H10B···O1 ⁱ	0.97	2.59	3.533 (3)	164.
C17—H17···O4 ⁱⁱ	0.93	2.45	3.337 (3)	160.
C20—H20····O7 ⁱⁱⁱ	0.93	2.37	3.242 (3)	155.

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.

